Service Region Design for Urban Electric Vehicle Sharing Systems

Ho-Yin Mak
Saïd Business School, University of Oxford

Joint work with Long He, Ying Rong, Max Shen
Sustainability and Transportation

• Did you know that
 – Transportation: 20% of global GHG emissions?
 – VMT grew by 30% since 1995?

• Directions for Solutions?
 – Cleaner vehicles (e.g., EVs)
 – Fewer vehicles
 – Fewer vehicle-miles
Car Sharing

• Sharing of ownership
 - Pooling of resources
 → Fewer vehicles
 - Reduces 0.23 cars per household

• Increased utilization of cars
 - Incentive to improve fuel economy
 → Cleaner vehicles
 - 23 mpg (own) → 33 mpg (sharing)
Modes of Car Sharing

ZipCar
- Specified locations
- Stations
- Round trips

Car2Go
- Any street parking
- Service region
- Round trips and One-way trips

Parking

Where?

Trip types
Key Challenge: Where to Cover?

- More unbalanced demand
- Larger fleet size
- Higher setup (infrastructure) cost

Ho-Yin Mak

Service Region Design for EV Sharing Systems
Repositioning Flows

Afternoon

Evening

Ho-Yin Mak
Repositioning and Charging

- Closed networks are hard to analyze due to dependence of arrivals & departures
- Fixed population mean (FPM) approximation → Open network [Whitt, MS]

Closed Queueing Network
Fundamental Trade-off: More vs. Less Coverage

- More imbalanced demand
- Larger fleet size
- Higher setup (infrastructure) cost

- More travel needs covered
- Higher value of covering other locations
Customer Adoption

Utility of serving dest. j for a cust. in i

$$\sum_{j \in I} a_{ij} x_{ij} \geq b$$

Aspiration level

Binary coverage decision variable

$$\sum_{j \in I} a_{ij} x_{ij} \leq b$$
Distributionally-Robust Optimization

Enlarged ambiguity set where true distribution may reside within

Consider worst case in ambiguity set

Statistical estimation

Not perfectly reliable

Data

Optimization

Ho-Yin Mak

Service Region Design for EV Sharing Systems
Robust Optimization

- Worst case of customer adoption rate in region i:

$$ q_i \leq \inf_{p \in P} \text{Prob}\left(\sum_{j \in I} a_{ij} x_j \geq b \right) $$

Given mean, covariance of nonnegative a_{ij}

Copositive Cone Constraints

Semi-definite Constraints

Copositive Cone

$$ CO_n := \{ A \in S_n | \forall v \in \mathbb{R}_+^n, v^T A v \geq 0 \} $$

Second-order Cone Constraints
Car2Go@San Diego
Other Data Sets

- 2010 American Community Survey and ArcGIS
 - Census data at zip code level with population and income.
 - Travel distances and times between regions based on road network.

- 2010 California Household Travel Survey (CHTS)
 - Households, persons and places tables with age, income, zip codes and travel modes.

- EV charging station data from U.S. Department of Energy
 - Location, zip code, charger number and charging network (“Blink”)
Optimal Service Region

Current operations
Selected Zip codes: 18
Fleet size: 379 EVs

Optimal solution
Selected Zip codes: 35
Fleet size: 369 EVs
Observation: Supporting customers’ travel needs with zero emission, deploying EV sharing service with 369 EVs gains similar CO2 emission savings from replacing 1392 gasoline cars with EV ownership.
Observation: One-way systems show more profits with higher adoption rates than round-trip systems by serving more destinations.
Conclusion

- Car sharing: emerging business model in sharing economy
 - Potential for sustainable development with EVs
- Service region design problem
 - Adoption behavior
 - Operational characteristics
- Computationally-efficient robust formulation integrated with data
- Design questions
 - Expansion opportunities